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Abstract— Dynamic authority-based keyword search 
algorithms,such as ObjectRank and personalized 
PageRank, leverage semantic link information to 
provide high quality, high recall search in databases, and 
the Web. Conceptually, these algorithms require a  
querytime PageRank-style iterative computation over 
the full graph. This computation is too expensive for 
large graphs, and not feasible at query time. 
Alternatively, building an index of precomputed results 
for some or all keywords involves very expensive 
preprocessing.We introduce BinRank, a system that 
approximates ObjectRank results by utilizing a hybrid 
approach inspired by materialized views in traditional 
query processing. We materialize a number of relatively 
small subsets of the data graph in such a way that any 
keyword query can be answered by running ObjectRank 
on only one of the subgraphs. BinRank generates the 
subgraphs by partitioning all the terms in the corpus 
based on their co-occurrence, executing ObjectRank for 
each partition using the terms to generate a set of 
random walk starting points, and keeping only those 
objects that receive non-negligible scores. The intuition 
is that a subgraph that contains all objects and links 
relevant to a set of related terms should have all the 
information needed to rank objects with respect to one 
of these terms. We demonstrate that BinRank can 
achieve subsecond query execution time on the English 
Wikipedia data set, while producing high-quality search 
results that closely approximate the results of 
ObjectRank on the original graph. The Wikipedia link 
graph contains about 108 edges, which is at least two 
orders of magnitude larger than what prior state of the 
art dynamic authority-based search systems have been 
able to demonstrate. Our experimental evaluation 
investigates the trade-off between query execution time, 
quality of the results, and storage requirements of 
BinRank. 

 

     INTRODUCTION 
The PageRank algorithm [1] utilizes the Web graph link 
structure to assign global importance to Web pages. It 
works by modeling the behavior of a “random Web 
surfer”who starts at a random Web page and follows 
outgoing links with uniform probability. The PageRank 
score is independent of a keyword query. Recently, 
dynamic versions of the PageRank algorithm have 
become popular. They are characterized by a query-
specific choice of the random walk starting points. In 
particular, two algorithms have got a lot of attention: 
Personalized PageRank (PPR) for Web graph data sets  
[2],[3],[4],[5] and ObjectRank for graph-modeled 
databases [6],[7],[8],[9],[10]. PPR is a modification of 
PageRank that performs search personalized on a 
preference set that contains Web pages 
that a user likes. For a given preference set, PPR 
performs a very expensive fixpoint iterative computation 
over the entire Web graph, while it generates 
personalized search  results. Therefore, the issue of 
scalability of PPR has attracted a lot of attention. 
ObjectRank extends (personalized) PageRank to 
perform keyword search in databases. ObjectRank [6] 
uses a query term posting list as a set of random walk 
starting points and conducts the walk on the instance 
graph of the database. The resulting system is well 
suited for “high recall” search, which exploits different 
semantic connection paths between objects in highly 
heterogeneous data sets. ObjectRank has successfully 
been applied to databases that have social networking 
components, such as bibliographic data and 
collaborative product design. However, ObjectRank 
suffers from the same scalability issues as personalized 
PageRank, as it requires multiple iterations over all 
nodes and links of the entire database graph. The 
original ObjectRank system has two modes: online and 
offline. The online mode runs the ranking algorithm 
once the query is received, which takes too longon large 
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graphs. For example, on a graph of articles of English 
Wikipedia1 with 3.2 million nodes and 109 million 
links, even a fully optimized in-memory implementation 
of ObjectRank takes 20-50 seconds to run. In the offline 
mode, Object Rank recomputed top-k results for a query 
workload in advance. This precomputation is very 
expensive and requires a lot of storage space for 
precomputed results. Moreover, this approach is not 
feasible for all terms outside the query workload that a 
user may search for, i.e., for all terms in the data set 
dictionary. For example, on the same Wikipedia data set, 
the full dictionary precomputation would take about a 
CPU-year. In this paper,weintroduce a BinRank system 
that employs a hybrid approach where query time can be 
traded off for preprocessing time and storage. BinRank 
closely approximates ObjectRank scores by running the 
same ObjectRank algorithm on a small subgraph, instead 
of the full data graph. The subgraphs are precomputed 
offline. The precomputation can be parallelized with 
linear scalability. For example, on the full Wikipedia 
data set, BinRank can answer any query in less 
than 1 second, by precomputing about a thousand 
subgraphs, which takes only about 12 hours on a single 
CPU. BinRank query execution easily scales to large 
clusters by distributing the subgraphs between the nodes 
of the cluster. This way, more subgraphs can be kept in 
RAM, thus decreasing the average query execution time. 
Since the distribution of the query terms in a dictionary 
is usually very uneven, the throughput of the system is 
greatly improved by keeping duplicates of popular 
subgraphs on multiple nodes of the cluster. The query 
term is routed to the least busy node that has the 
corresponding subgraph. There are two dimensions to 
the subgraph precomputation problem: 
 1) how many subgraphs to precompute and 
 2) how to construct each subgraph that is used for 
      approximation.  
The intuition behind our approach is thata subgraph that 
contains all objects and links relevant to aset of related 
terms should have all the information needed to rank 
objects w.r.t. one of these terms. For 1), we group all 
terms into a small number (around 1,000 in case of 
Wikipedia) of “bins” of terms based on their co-
occurrence in the entire data set. For 2), we execute 
ObjectRank for each bin using the terms in the bins as 
random walk starting points and keep only those nodes 
that receive non-negligible scores. Our experimental 
evaluation highlights the tuning of the system needed to 
balance the query performance with size and number of 
the precomputed subgraphs. Intuitively, query 
performance is highly correlated to the size of the 
subgraph, which, in turn, is highly correlated with the 

number of documents in the bin. Thus, normally, it is 
sufficient to create bins with a certain size limit to 
achieve a specific target running time. However, there is 
some variability in the process and some bins may still 
result in unusually large subgraphs and slow queries. To 
address this, we employ an adaptive iterative process 
that further splits the problematic subgraphs to guarantee 
that a vast majority of queries will be executed within 
the allotted time budget.Other approximation techniques 
have been considered before to improve scalability of 
dynamic authority-based search algorithms. Monte Carlo 
algorithms are introduced in  and  for approximation 
during precomputation. HubRank uses the same 
approximation as , but performs precomputation only for 
“hub” nodes. Other techniques might also suggest 
sampling-based techniques online. However, although 
these techniques claim online query processing, they 
have only been demonstrated on graphs with less than 
106 links. In contrast, we demonstrate superior 
scalability of our approach on a Wikipedia graph that is 
two orders of magnitude larger. We also show that our 
approximation using ObjectRank itself is more precise 
than the sampling-based techniques.  

I. RELATED WORK 

The issue of scalability of PPR [3]  has attracted a lot of 
attention. PPR performs a very expensive fixpoint 
iterative computation over the entire graph, while it 
generates personalized search results. To avoid the 
expensive iterative calculation at runtime, one can 
naively precompute and materialize all the possible 
personalized PageRank vectors (PPVs) [2]. Although 
this method guarantees fast user response time, such 
precomputation is impractical as it requires a huge 
amount of time and storage especially when done on 
large graphs. In this section, we examine hub-based and 
Monte Carlo style methods that address the scalability 
problem of PPR, and give an overview of HubRank that 
integrates the two approaches to improve the scalability 
of ObjectRank. Even though these approaches enabled 
PPR to be executed on large graphs, they either limit the 
degree of personalization or deteriorate the quality of the 
top-k result lists significantly. Hub-based approaches 
materialize only a selected subset of PPVs. Topic-
sensitive PageRank [2]  suggests materialization of 16 
PPVs of selected topics and linearly combining them at 
query time. The personalized PageRank computation 
suggested in  enables a finer-grained personalization by 
efficiently materializing significantly more PPVs (e.g., 
100 K) and combining them using the hub 
decomposition theorem and dynamic programming 
techniques. However, it is still not a fully personalized 
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PageRank, because it can personalize only on a 
preference set subsumed within a hub set H. Monte 
Carlo methods[4],[5] replace the expensive power 
iteration algorithm with a randomized approximation 
algorithm . In order to personalize PageRank on any 
arbitrary preference set with maintaining just a small 
amount of precomputed results, Fogaras et al. introduce 
the Fingerprint generation can be easily parallelized and 
the quality of search results improves as the number of 
fingerprints increases. However, as mentioned in [4], the 
precision of search results generated by the fingerprint 
algorithm is somewhat less than that of power-iteration-
based algorithms, and sometimes, the quality of its 
results may be inadequate especially for nodes that have 
many close neighbors. In  a Monte Carlo algorithm that 
takes into account not only the last visited nodes, but 
also all visited nodes during the sampled walks, is 
proposed. Also, it showed that Monte Carlo algorithms 
with iterative start outperform those with random start. 
HubRank  is a search system based on ObjectRank that 
improved the scalability of ObjectRank by combining 
the above two approaches. It first selects a fixed number 
of hub nodes by using a greedy hub selection algorithm 
that utilizes a query workload in order to minimize the 
query execution time. Given a set of hub nodes H, it 
materializes the fingerprints of hub nodes in H. At query 
time, it generates an active subgraph by expanding the 
base set with its neighbors. It stops following a path 
when it encounters a hub node whose PPV was 
materialized, or the distance from the base set exceeds a 
fixed maximum length. HubRank recursively 
approximates PPVs of all active nodes, terminating with 
computation of PPV for the query node itself. During 
this computation, the PPV approximations are 
dynamically pruned in order to keep them sparse. As 
stated in , the dynamic pruning takes a key role in 
outperforming ObjectRank by a noticeable margin. 
However, by limiting the precision of hub vectors, 
HubRank may get somewhat inaccurate search results, 
as stated in . Also, since it materialized only PPVs ofH, 
just as , the efficiency of query processing and the 
quality of query results are very sensitive to the size of 
H and the hub selection scheme. Finally, Chakrabarti  
did not show any large-scale experimental results to 
verify the scalability of HubRank. , we perform quality 
and scalability experiments on the full English 
Wikipedia data set exported in October 2007, to show 
that BinRank is an efficient ObjectRank approximation 
method that generates a highquality top-k list for any 
keyword query in the corpus. For comparative 
evaluation of the performance of BinRank, we 
implemented the Monte Carlo algorithm in  that was 

shown to outperform other variations in . We also 
implemented HubRank  to check its scalability on our 
Wikipedia data set. Unlike  which proves the 
convergence to the exact solution on arbitrary graphs, 
and  and which offer exact methods at the expense of 
limiting the choice of personalization, our solution is 
entirely heuristic. However,extensive experimental 
evaluation confirms that on realworld graphs, BinRank 
can strike a good balance between query performance 
and closeness of approximation. 

3 OBJECTRANK BACKGROUND 
In this section, [6],[9],[10] we describe the essentials of 
ObjectRank  We first explain the data model and query 
processing, and then, discuss the result quality and 
scalability issues that motivate this paper.   
3.1 Data Model 
ObjectRank performs top-k relevance search over a 
database modeled as a labeled directed graph. The data 
graph G(V,E) models objects in a database as nodes, and 
the semantic relationships between them as edges. A 
node v €V contains a set of keywords and its object type. 
For example, a paper in a bibliographic database can be 
represented as a node containing its title and labeled 
with its type, “paper.” A directed edge e € E from u to v 
is labeled with its relationship type λ(e). 
3.2 Query Processing 
For a given query, ObjectRank [3] returns top-k objects 
relevant to the query. We first describe the intuition 
behind ObjectRank, introduce the ObjectRank equation, 
and then, elaborate on important calibration factors. 
ObjectRank query processing can be illustrated using the 
random surfer model. A random surfer starts from a 
random node vi among nodes that contain the given 
keyword. These These random surfer starting points are 
called a base set. For a given keyword t, the keyword 
base set of t, BS(t), consists of nodes in which t occurs. 
Note that any node in G can be part of the base set, 
which makes ObjectRank support the full degree of 
personalization. 
3.3 Quality and Scalability 
ObjectRank [4],[5] returns top-k search results for a 
given query using both the content and the link structure 
in G. Since it utilizes the link structure that captures the 
semantic relationships between objects, an object that 
does not contain a given keyword but is highly relevant 
to the keyword can be included in the top-k list. This is 
in contrast to the static PageRank approach that only 
returns objects containing the keyword sorted according 
to their PageRank score. This key difference is one of 
the main reasons for ObjectRank’s superior result 
quality 
 

Muthe V Satya Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2541-2547.

2543



4 RELEVANT SUBGRAPHS 
Our goal is to improve the scalability of ObjectRank 
while maintaining the high quality of top-k result lists. 
We focus on the fact that ObjectRank does not need to 
calculate the exact full ObjectRank vector r to answer a 
top-k keyword query . We identify three important 
properties of ObjectRank vectors that are  irectly 
relevant to the result quality and the performance of 
ObjectRank. First, for many of the keywords in the 
corpus, the number of objects with non-negligible 
ObjectRank values is much less than k<<|V| . This 
means that just a small portion of G is relevant to a 
specific keyword. Here, we say that an ObjectRank 
value of v, U(v) is non-negligible if r(v) is above the 
convergence threshold. The intuition for applying the 
threshold is thatdifferences between the scores that are 
within the  threshold of each other are noise after 
ObjectRank execution. Thus, scores below threshold are 
effectively indistinguishable from zero, and objects that 
have such scores are not at all relevant to the query term. 
Second, we observed that top-k results of any keyword 
term t generated on subgraphs of G composed of nodes 
with non-negligible ObjectRank values, w.r.t. the same t, 
are very close to those generated on G. Third, when an 
object has a non-negligible ObjectRank value for a given 
base set BS1, it is guaranteed that the object gains a non-
negligible ObjectRank score for another base set BS2 if 

21 BSBS  . Thus, a subgraph of G composed of 
nodes with non-negligible ObjectRank values. 

5 BIN CONSTRUCTION 
As outlined above, we construct a set of MSGs for terms 
of a dictionary or a workload by partitioning the terms 
into a set of term bins based on their co-occurrence. We 
generate an MSG for every bin based on the intuition 
that a subgraph that contains all objects and links 
relevant to a set of related terms should have all the 
information needed to rank objects with respect to one 
of these terms. There are two main goals in constructing 
term bins. First, controlling the size of each bin to ensure 
that the resulting subgraph is small enough for 
ObjectRank to execute in a reasonable amount of time. 
Second, minimizing the number of bins to save the 
preprocessing time. After all, we know that 
precomputing ObjectRank for all terms in our corpus is 
not feasible. To achieve the first goal, we introduce a 
maxBinSize parameter that limits the size of the union 
of the posting lists of the terms in the bin, called bin 
size. As discussed above, ObjectRank uses the 
convergence threshold that is inversely proportional to 
the size of the base set, i.e., the bin size in case of 
subgraph construction. Thus, there is a strong correlation 
between the bin size and the size of the materialized 

subgraph. As show in Section 8, the value of 
maxBinSize should be determined by quality and 
performance requirements of the system. The problem of 
minimizing the number of bins is NPhard. In fact, if all 
posting lists are disjoint, this problem reduces to a 
classical NP-hard bin packing problem . We apply a 
greedy algorithm that picks an unassigned term with the 
largest posting list to start a bin and loops to add the 
term with the largest overlap with documents already in 
the bin. We use a number of heuristics to minimize the 
required number of set intersections, which dominate the 
complexity  

 
 
Fig. 1. Bin computation algorithm 
 

of the algorithm. The tight upper bound on the number 
of set intersections that our algorithm needs to perform 
is the number of pairs of terms that co-occur in at least 
one document. To speed-up the execution of set 
intersections for larger posting lists, we use KMV 
synopses [13] to estimate the size of set intersections. 
The algorithm in Fig. 1 works on term posting lists from 
a text index. As the algorithm fills up a bin, it maintains 
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a list of document IDs that are already in the bin, and a 
list of candidate terms that are known to overlap with the 
bin (i.e., their posting lists contain at least one document 
that was already placed into the bin). The main idea of 
this greedy algorithm is to pick a candidate term with a 
posting list that overlaps the most with documents 
already in the bin, without posting list union size 
exceeding the maximum bin size . While it is more 
efficient to prepare bins for a particular workload that 
may come from a system query log, it is dangerous to 
assume that a query term that has not been seen before 
will not be seen in the future. We demonstrate that it is 
feasible to use the entire data set dictionary as the 
workload, in order to be able to answer any query. Due 
to caching of candidate intersection results in lines 12- 
14 of the algorithm, the upper bound on the number of 
set intersections performed by this algorithm is the 
number of pairs of co-occurring terms in the data set. 
Indeed, in the worst case, for every term t that has just 
been placed into the bin, we need to intersect the bin 
with every term t0 that co-occurs with t, in order to 
check if t0 is subsumed by the bin completely, and can 
be placed into the bin “for free.” 

6 SYSTEM ARCHITECTURE 
 

 
 
Fig. 2 shows the architecture of the BinRank system.  
 
During the preprocessing stage (left side of figure), we 
generate MSGs as defined in Section 4. During query 
processing stage (right side of figure), we execute the 
ObjectRank algorithm on the subgraphs instead of the 
full graph and produce high-quality approximations of 
top-k lists at a small fraction of the cost. In order to save 
preprocessing cost and storage, each MSG is designed to 
answer multiple term queries. We observed in the 

Wikipedia data set that a single MSG can be used for 
330-2,000 terms, on average. 
6.1 Preprocessing 
The preprocessing stage of BinRank starts with a set of 
workload terms W for which MSGs will be materialized. 
If an actual query workload is not available, W includes 
the entire set of terms found in the corpus. We exclude 
from W all terms with posting lists longer than a system 
parameter maxPostingList. The posting lists of these 
terms are deemed too large to be packed into bins. We 
execute ObjectRank for each such term individually and 
store the resulting top-k lists. Naturally, maxPostingList 
should be tuned so that there are relatively few of these 
frequent terms. In the case of Wikipedia, we used 
maxPostingList ¼ 2;000 and only 381 terms out of 
about 700,000 had to be precomputed individually. This 
process took 4.6 hours on a single CPU. For each term w 
2 W, BinRank reads a posting list T from the Lucene3 
index and creates a KMV synopsis T0 that is used to 
estimate set intersections.The bin construction 
algorithm, PackTermsIntoBins, partitions W into a set of 
bins composed of frequently co-occurring terms. The 
algorithm takes a single parameter maxBinSize, which 
limits the size of a bin posting list, i.e., the union of 
posting lists of all terms in the bin. During the bin 
construction, BinRank stores the bin identifier of each 
term into the Lucene index as an additional field. This 
allows us to map each term to the corresponding bin and 
MSG at query time . 
6.2 Query Processing 
For a given keyword query q, the query dispatcher 
retrieves from the Lucene index the posting list bs(q) 
(used as the base set for the ObjectRank execution) and 
the bin identifierB(q). Given a bin identifier, the MSG 
mapper determines whether the corresponding MSG is 
already in memory. If it is not, the MSG deserializer 
reads the MSG representation from disk. The BinRank 
query processing module uses all available memory as 
an LRU cache of MSGs. For smaller data graphs, it is 
possible to dramatically reduce MSG storage 
requirements by storing only a set of MSGnodes V`, and 
generating the corresponding set of edges E0 only at 
query time. However, in our Wikipedia, data setthat 
would introduce an additional delay of 1.5-2 seconds, 
which is not acceptable in a keyword search system. The 
ObjectRank module gets the in-memory instance of 
MSG, the base set, and a set of ObjectRank calibrating 
parameters: 1) the damping factor d; 2) the convergence 
threshold έ; and 3) the number of top-k list entries k. 
Once the ObjectRank scores are computed and sorted, 
the resulting document ids are used to retrieve and 
present the top-k objects to the user. 
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Multikeyword queries are processed as follows: For a 
given conjunctive query composed of n terms {t1 . . . tn}, 
the ObjectRank module gets MSGs, MSG(b(t1) . . . 
MSG(b(tn ) and evaluates each term over the  
corresponding MSG. Then, it multiplies the ObjectRank 
scores obtained over MSGs to generate the top-k list for 
the query. For a disjunctive query, the ObjectRank 
module sums the ObjectRank scores w.r.t. each term 
calculated using MSGs to produce BinRank scores. 

 7  EXPERIMENTAL EVALUATION 
 

7.1 Object Rank on the  full bingo Graph 
ObjectRank on GbingO takes too long to be executed 
online and consumes around 80 MB of memory just for 
the link information of GYAHOO. As shown in Fig. 3, it 
takes around 20-50 seconds (30 seconds on average) to 
compute thedynamically generated top-k list for a given 
single keyword 
 

 
 

Fig. 3. The number of keywords and average ObjectRank 
execution time on the bingo graph per frequency range 
 

query even with our optimized, in-memory ObjectRank 
execution engine. For frequent keywords that have 
postinglists with more than 200 documents, the 
ObjectRank is likelyto take longer. Since frequent 
keywords are found in many articles, they are more 
likely to be meaningfully connected to many other 
articles through many paths, resulting in a wider search 
space for ObjectRank to evaluate and rank. Fig. 3 also 
shows the keyword frequency distribution obtained from 
the Lucene text index built on the article titles. The total 
number of keywords in the index is 698,214, and the 
keyword frequencies follow the typical power law 
distribution.  
7.3 BinRank 
During the BinRank preprocessing stage, we generate 
bins for all the keywords in the corpus. Once the bins are 
constructed, we generate an MSG per bin by executing 

ObjectRank on Gbingo using the union of the posting lists 
of the terms in a bin as a single base set. We first 
describe the performance of the bin construction and 
MSG generation, and then, measure the query result 
quality and the impact of maxBinSize  
 
 
 
7.3.1 Preprocessing 
Bin construction. To measure the performance of the 
binconstruction stage, we examine the bin construction 
timeand the number of bins constructed with different 
maxBinSize values 
 
. 

 
Fig. 4. Performance of bin construction  
 

 
 
Fig. 5. The effect of maxBinSize on the MSG construction cost 
 

We construct bins for all terms in our Lucene index, 
except for the 381 most frequent terms which have 
posting lists longer than a system parameter 
maxPostingList ¼ 2;000. Recall from Section 7 that 
such terms are deemed to be too frequent, so we 
precompute their ObjectRank authority vectors 
individually. This process takes 1.6 hrs 

CONCLUSION 
            In this paper, we proposed BinRank as a 
practical solution for scalable dynamic authority-based 
ranking. It is based on partitioning and approximation 
using a number of materialized subgraphs. We showed 
that our tunable system offers a nice trade-off between 
query time and preprocessing cost.  
We introduce a greedy algorithm that groups co-
occurring terms into a number of bins for which we 
compute materialized subgraphs. Note that the number 
of bins is much less than the number of terms. The 
materialized subgraphs are computed offline by using 
ObjectRank itself. The intuition behind the approach is 
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that a subgraph that contains all objects and links 
relevant to a set of related terms should have all the 
information needed to rank objects with respect to one 
of these terms. Our extensive experimental evaluation 
confirms this intuition. For future work, we want to 
study the impact of other keyword relevance measures, 
besides term co-occurrence, such as thesaurus or 
ontologies, on the performance of BinRank. By 
increasing the relevance of keywords in a bin, we expect 
the quality of materialized subgraphs, thus the top-k 
quality and the query time can be improved. We also 
want to study better solutions for queries whose random 
surfer starting points are provided by Boolean. 
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