
Dynamic Approch to Retrive the Web pages

MUTHE V SATYA NAGARAJU*, U. NANAJI#

* Department of CSE, Saint Theresa Institute of Engg. & Technology, Garividi, Vizayanagaram, (A.P.),
India

HOD, Prof., Department of CSE, Saint Theresa Institute of Engg. & Technology, Garividi,
Vizayanagaram, (A.P.), India

Abstract— Dynamic authority-based keyword search
algorithms,such as ObjectRank and personalized
PageRank, leverage semantic link information to
provide high quality, high recall search in databases, and
the Web. Conceptually, these algorithms require a
querytime PageRank-style iterative computation over
the full graph. This computation is too expensive for
large graphs, and not feasible at query time.
Alternatively, building an index of precomputed results
for some or all keywords involves very expensive
preprocessing.We introduce BinRank, a system that
approximates ObjectRank results by utilizing a hybrid
approach inspired by materialized views in traditional
query processing. We materialize a number of relatively
small subsets of the data graph in such a way that any
keyword query can be answered by running ObjectRank
on only one of the subgraphs. BinRank generates the
subgraphs by partitioning all the terms in the corpus
based on their co-occurrence, executing ObjectRank for
each partition using the terms to generate a set of
random walk starting points, and keeping only those
objects that receive non-negligible scores. The intuition
is that a subgraph that contains all objects and links
relevant to a set of related terms should have all the
information needed to rank objects with respect to one
of these terms. We demonstrate that BinRank can
achieve subsecond query execution time on the English
Wikipedia data set, while producing high-quality search
results that closely approximate the results of
ObjectRank on the original graph. The Wikipedia link
graph contains about 108 edges, which is at least two
orders of magnitude larger than what prior state of the
art dynamic authority-based search systems have been
able to demonstrate. Our experimental evaluation
investigates the trade-off between query execution time,
quality of the results, and storage requirements of
BinRank.

 INTRODUCTION
The PageRank algorithm [1] utilizes the Web graph link
structure to assign global importance to Web pages. It
works by modeling the behavior of a “random Web
surfer”who starts at a random Web page and follows
outgoing links with uniform probability. The PageRank
score is independent of a keyword query. Recently,
dynamic versions of the PageRank algorithm have
become popular. They are characterized by a query-
specific choice of the random walk starting points. In
particular, two algorithms have got a lot of attention:
Personalized PageRank (PPR) for Web graph data sets
[2],[3],[4],[5] and ObjectRank for graph-modeled
databases [6],[7],[8],[9],[10]. PPR is a modification of
PageRank that performs search personalized on a
preference set that contains Web pages
that a user likes. For a given preference set, PPR
performs a very expensive fixpoint iterative computation
over the entire Web graph, while it generates
personalized search results. Therefore, the issue of
scalability of PPR has attracted a lot of attention.
ObjectRank extends (personalized) PageRank to
perform keyword search in databases. ObjectRank [6]
uses a query term posting list as a set of random walk
starting points and conducts the walk on the instance
graph of the database. The resulting system is well
suited for “high recall” search, which exploits different
semantic connection paths between objects in highly
heterogeneous data sets. ObjectRank has successfully
been applied to databases that have social networking
components, such as bibliographic data and
collaborative product design. However, ObjectRank
suffers from the same scalability issues as personalized
PageRank, as it requires multiple iterations over all
nodes and links of the entire database graph. The
original ObjectRank system has two modes: online and
offline. The online mode runs the ranking algorithm
once the query is received, which takes too longon large

Muthe V Satya Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2541-2547.

2541

graphs. For example, on a graph of articles of English
Wikipedia1 with 3.2 million nodes and 109 million
links, even a fully optimized in-memory implementation
of ObjectRank takes 20-50 seconds to run. In the offline
mode, Object Rank recomputed top-k results for a query
workload in advance. This precomputation is very
expensive and requires a lot of storage space for
precomputed results. Moreover, this approach is not
feasible for all terms outside the query workload that a
user may search for, i.e., for all terms in the data set
dictionary. For example, on the same Wikipedia data set,
the full dictionary precomputation would take about a
CPU-year. In this paper,weintroduce a BinRank system
that employs a hybrid approach where query time can be
traded off for preprocessing time and storage. BinRank
closely approximates ObjectRank scores by running the
same ObjectRank algorithm on a small subgraph, instead
of the full data graph. The subgraphs are precomputed
offline. The precomputation can be parallelized with
linear scalability. For example, on the full Wikipedia
data set, BinRank can answer any query in less
than 1 second, by precomputing about a thousand
subgraphs, which takes only about 12 hours on a single
CPU. BinRank query execution easily scales to large
clusters by distributing the subgraphs between the nodes
of the cluster. This way, more subgraphs can be kept in
RAM, thus decreasing the average query execution time.
Since the distribution of the query terms in a dictionary
is usually very uneven, the throughput of the system is
greatly improved by keeping duplicates of popular
subgraphs on multiple nodes of the cluster. The query
term is routed to the least busy node that has the
corresponding subgraph. There are two dimensions to
the subgraph precomputation problem:
 1) how many subgraphs to precompute and
 2) how to construct each subgraph that is used for
 approximation.
The intuition behind our approach is thata subgraph that
contains all objects and links relevant to aset of related
terms should have all the information needed to rank
objects w.r.t. one of these terms. For 1), we group all
terms into a small number (around 1,000 in case of
Wikipedia) of “bins” of terms based on their co-
occurrence in the entire data set. For 2), we execute
ObjectRank for each bin using the terms in the bins as
random walk starting points and keep only those nodes
that receive non-negligible scores. Our experimental
evaluation highlights the tuning of the system needed to
balance the query performance with size and number of
the precomputed subgraphs. Intuitively, query
performance is highly correlated to the size of the
subgraph, which, in turn, is highly correlated with the

number of documents in the bin. Thus, normally, it is
sufficient to create bins with a certain size limit to
achieve a specific target running time. However, there is
some variability in the process and some bins may still
result in unusually large subgraphs and slow queries. To
address this, we employ an adaptive iterative process
that further splits the problematic subgraphs to guarantee
that a vast majority of queries will be executed within
the allotted time budget.Other approximation techniques
have been considered before to improve scalability of
dynamic authority-based search algorithms. Monte Carlo
algorithms are introduced in and for approximation
during precomputation. HubRank uses the same
approximation as , but performs precomputation only for
“hub” nodes. Other techniques might also suggest
sampling-based techniques online. However, although
these techniques claim online query processing, they
have only been demonstrated on graphs with less than
106 links. In contrast, we demonstrate superior
scalability of our approach on a Wikipedia graph that is
two orders of magnitude larger. We also show that our
approximation using ObjectRank itself is more precise
than the sampling-based techniques.

I. RELATED WORK

The issue of scalability of PPR [3] has attracted a lot of
attention. PPR performs a very expensive fixpoint
iterative computation over the entire graph, while it
generates personalized search results. To avoid the
expensive iterative calculation at runtime, one can
naively precompute and materialize all the possible
personalized PageRank vectors (PPVs) [2]. Although
this method guarantees fast user response time, such
precomputation is impractical as it requires a huge
amount of time and storage especially when done on
large graphs. In this section, we examine hub-based and
Monte Carlo style methods that address the scalability
problem of PPR, and give an overview of HubRank that
integrates the two approaches to improve the scalability
of ObjectRank. Even though these approaches enabled
PPR to be executed on large graphs, they either limit the
degree of personalization or deteriorate the quality of the
top-k result lists significantly. Hub-based approaches
materialize only a selected subset of PPVs. Topic-
sensitive PageRank [2] suggests materialization of 16
PPVs of selected topics and linearly combining them at
query time. The personalized PageRank computation
suggested in enables a finer-grained personalization by
efficiently materializing significantly more PPVs (e.g.,
100 K) and combining them using the hub
decomposition theorem and dynamic programming
techniques. However, it is still not a fully personalized

Muthe V Satya Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2541-2547.

2542

PageRank, because it can personalize only on a
preference set subsumed within a hub set H. Monte
Carlo methods[4],[5] replace the expensive power
iteration algorithm with a randomized approximation
algorithm . In order to personalize PageRank on any
arbitrary preference set with maintaining just a small
amount of precomputed results, Fogaras et al. introduce
the Fingerprint generation can be easily parallelized and
the quality of search results improves as the number of
fingerprints increases. However, as mentioned in [4], the
precision of search results generated by the fingerprint
algorithm is somewhat less than that of power-iteration-
based algorithms, and sometimes, the quality of its
results may be inadequate especially for nodes that have
many close neighbors. In a Monte Carlo algorithm that
takes into account not only the last visited nodes, but
also all visited nodes during the sampled walks, is
proposed. Also, it showed that Monte Carlo algorithms
with iterative start outperform those with random start.
HubRank is a search system based on ObjectRank that
improved the scalability of ObjectRank by combining
the above two approaches. It first selects a fixed number
of hub nodes by using a greedy hub selection algorithm
that utilizes a query workload in order to minimize the
query execution time. Given a set of hub nodes H, it
materializes the fingerprints of hub nodes in H. At query
time, it generates an active subgraph by expanding the
base set with its neighbors. It stops following a path
when it encounters a hub node whose PPV was
materialized, or the distance from the base set exceeds a
fixed maximum length. HubRank recursively
approximates PPVs of all active nodes, terminating with
computation of PPV for the query node itself. During
this computation, the PPV approximations are
dynamically pruned in order to keep them sparse. As
stated in , the dynamic pruning takes a key role in
outperforming ObjectRank by a noticeable margin.
However, by limiting the precision of hub vectors,
HubRank may get somewhat inaccurate search results,
as stated in . Also, since it materialized only PPVs ofH,
just as , the efficiency of query processing and the
quality of query results are very sensitive to the size of
H and the hub selection scheme. Finally, Chakrabarti
did not show any large-scale experimental results to
verify the scalability of HubRank. , we perform quality
and scalability experiments on the full English
Wikipedia data set exported in October 2007, to show
that BinRank is an efficient ObjectRank approximation
method that generates a highquality top-k list for any
keyword query in the corpus. For comparative
evaluation of the performance of BinRank, we
implemented the Monte Carlo algorithm in that was

shown to outperform other variations in . We also
implemented HubRank to check its scalability on our
Wikipedia data set. Unlike which proves the
convergence to the exact solution on arbitrary graphs,
and and which offer exact methods at the expense of
limiting the choice of personalization, our solution is
entirely heuristic. However,extensive experimental
evaluation confirms that on realworld graphs, BinRank
can strike a good balance between query performance
and closeness of approximation.

3 OBJECTRANK BACKGROUND
In this section, [6],[9],[10] we describe the essentials of
ObjectRank We first explain the data model and query
processing, and then, discuss the result quality and
scalability issues that motivate this paper.
3.1 Data Model
ObjectRank performs top-k relevance search over a
database modeled as a labeled directed graph. The data
graph G(V,E) models objects in a database as nodes, and
the semantic relationships between them as edges. A
node v €V contains a set of keywords and its object type.
For example, a paper in a bibliographic database can be
represented as a node containing its title and labeled
with its type, “paper.” A directed edge e € E from u to v
is labeled with its relationship type λ(e).
3.2 Query Processing
For a given query, ObjectRank [3] returns top-k objects
relevant to the query. We first describe the intuition
behind ObjectRank, introduce the ObjectRank equation,
and then, elaborate on important calibration factors.
ObjectRank query processing can be illustrated using the
random surfer model. A random surfer starts from a
random node vi among nodes that contain the given
keyword. These These random surfer starting points are
called a base set. For a given keyword t, the keyword
base set of t, BS(t), consists of nodes in which t occurs.
Note that any node in G can be part of the base set,
which makes ObjectRank support the full degree of
personalization.
3.3 Quality and Scalability
ObjectRank [4],[5] returns top-k search results for a
given query using both the content and the link structure
in G. Since it utilizes the link structure that captures the
semantic relationships between objects, an object that
does not contain a given keyword but is highly relevant
to the keyword can be included in the top-k list. This is
in contrast to the static PageRank approach that only
returns objects containing the keyword sorted according
to their PageRank score. This key difference is one of
the main reasons for ObjectRank’s superior result
quality

Muthe V Satya Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2541-2547.

2543

4 RELEVANT SUBGRAPHS
Our goal is to improve the scalability of ObjectRank
while maintaining the high quality of top-k result lists.
We focus on the fact that ObjectRank does not need to
calculate the exact full ObjectRank vector r to answer a
top-k keyword query . We identify three important
properties of ObjectRank vectors that are irectly
relevant to the result quality and the performance of
ObjectRank. First, for many of the keywords in the
corpus, the number of objects with non-negligible
ObjectRank values is much less than k<<|V| . This
means that just a small portion of G is relevant to a
specific keyword. Here, we say that an ObjectRank
value of v, U(v) is non-negligible if r(v) is above the
convergence threshold. The intuition for applying the
threshold is thatdifferences between the scores that are
within the threshold of each other are noise after
ObjectRank execution. Thus, scores below threshold are
effectively indistinguishable from zero, and objects that
have such scores are not at all relevant to the query term.
Second, we observed that top-k results of any keyword
term t generated on subgraphs of G composed of nodes
with non-negligible ObjectRank values, w.r.t. the same t,
are very close to those generated on G. Third, when an
object has a non-negligible ObjectRank value for a given
base set BS1, it is guaranteed that the object gains a non-
negligible ObjectRank score for another base set BS2 if

21 BSBS  . Thus, a subgraph of G composed of
nodes with non-negligible ObjectRank values.

5 BIN CONSTRUCTION
As outlined above, we construct a set of MSGs for terms
of a dictionary or a workload by partitioning the terms
into a set of term bins based on their co-occurrence. We
generate an MSG for every bin based on the intuition
that a subgraph that contains all objects and links
relevant to a set of related terms should have all the
information needed to rank objects with respect to one
of these terms. There are two main goals in constructing
term bins. First, controlling the size of each bin to ensure
that the resulting subgraph is small enough for
ObjectRank to execute in a reasonable amount of time.
Second, minimizing the number of bins to save the
preprocessing time. After all, we know that
precomputing ObjectRank for all terms in our corpus is
not feasible. To achieve the first goal, we introduce a
maxBinSize parameter that limits the size of the union
of the posting lists of the terms in the bin, called bin
size. As discussed above, ObjectRank uses the
convergence threshold that is inversely proportional to
the size of the base set, i.e., the bin size in case of
subgraph construction. Thus, there is a strong correlation
between the bin size and the size of the materialized

subgraph. As show in Section 8, the value of
maxBinSize should be determined by quality and
performance requirements of the system. The problem of
minimizing the number of bins is NPhard. In fact, if all
posting lists are disjoint, this problem reduces to a
classical NP-hard bin packing problem . We apply a
greedy algorithm that picks an unassigned term with the
largest posting list to start a bin and loops to add the
term with the largest overlap with documents already in
the bin. We use a number of heuristics to minimize the
required number of set intersections, which dominate the
complexity

Fig. 1. Bin computation algorithm

of the algorithm. The tight upper bound on the number
of set intersections that our algorithm needs to perform
is the number of pairs of terms that co-occur in at least
one document. To speed-up the execution of set
intersections for larger posting lists, we use KMV
synopses [13] to estimate the size of set intersections.
The algorithm in Fig. 1 works on term posting lists from
a text index. As the algorithm fills up a bin, it maintains

Muthe V Satya Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2541-2547.

2544

a list of document IDs that are already in the bin, and a
list of candidate terms that are known to overlap with the
bin (i.e., their posting lists contain at least one document
that was already placed into the bin). The main idea of
this greedy algorithm is to pick a candidate term with a
posting list that overlaps the most with documents
already in the bin, without posting list union size
exceeding the maximum bin size . While it is more
efficient to prepare bins for a particular workload that
may come from a system query log, it is dangerous to
assume that a query term that has not been seen before
will not be seen in the future. We demonstrate that it is
feasible to use the entire data set dictionary as the
workload, in order to be able to answer any query. Due
to caching of candidate intersection results in lines 12-
14 of the algorithm, the upper bound on the number of
set intersections performed by this algorithm is the
number of pairs of co-occurring terms in the data set.
Indeed, in the worst case, for every term t that has just
been placed into the bin, we need to intersect the bin
with every term t0 that co-occurs with t, in order to
check if t0 is subsumed by the bin completely, and can
be placed into the bin “for free.”

6 SYSTEM ARCHITECTURE

Fig. 2 shows the architecture of the BinRank system.

During the preprocessing stage (left side of figure), we
generate MSGs as defined in Section 4. During query
processing stage (right side of figure), we execute the
ObjectRank algorithm on the subgraphs instead of the
full graph and produce high-quality approximations of
top-k lists at a small fraction of the cost. In order to save
preprocessing cost and storage, each MSG is designed to
answer multiple term queries. We observed in the

Wikipedia data set that a single MSG can be used for
330-2,000 terms, on average.
6.1 Preprocessing
The preprocessing stage of BinRank starts with a set of
workload terms W for which MSGs will be materialized.
If an actual query workload is not available, W includes
the entire set of terms found in the corpus. We exclude
from W all terms with posting lists longer than a system
parameter maxPostingList. The posting lists of these
terms are deemed too large to be packed into bins. We
execute ObjectRank for each such term individually and
store the resulting top-k lists. Naturally, maxPostingList
should be tuned so that there are relatively few of these
frequent terms. In the case of Wikipedia, we used
maxPostingList ¼ 2;000 and only 381 terms out of
about 700,000 had to be precomputed individually. This
process took 4.6 hours on a single CPU. For each term w
2 W, BinRank reads a posting list T from the Lucene3
index and creates a KMV synopsis T0 that is used to
estimate set intersections.The bin construction
algorithm, PackTermsIntoBins, partitions W into a set of
bins composed of frequently co-occurring terms. The
algorithm takes a single parameter maxBinSize, which
limits the size of a bin posting list, i.e., the union of
posting lists of all terms in the bin. During the bin
construction, BinRank stores the bin identifier of each
term into the Lucene index as an additional field. This
allows us to map each term to the corresponding bin and
MSG at query time .
6.2 Query Processing
For a given keyword query q, the query dispatcher
retrieves from the Lucene index the posting list bs(q)
(used as the base set for the ObjectRank execution) and
the bin identifierB(q). Given a bin identifier, the MSG
mapper determines whether the corresponding MSG is
already in memory. If it is not, the MSG deserializer
reads the MSG representation from disk. The BinRank
query processing module uses all available memory as
an LRU cache of MSGs. For smaller data graphs, it is
possible to dramatically reduce MSG storage
requirements by storing only a set of MSGnodes V`, and
generating the corresponding set of edges E0 only at
query time. However, in our Wikipedia, data setthat
would introduce an additional delay of 1.5-2 seconds,
which is not acceptable in a keyword search system. The
ObjectRank module gets the in-memory instance of
MSG, the base set, and a set of ObjectRank calibrating
parameters: 1) the damping factor d; 2) the convergence
threshold έ; and 3) the number of top-k list entries k.
Once the ObjectRank scores are computed and sorted,
the resulting document ids are used to retrieve and
present the top-k objects to the user.

Muthe V Satya Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2541-2547.

2545

Multikeyword queries are processed as follows: For a
given conjunctive query composed of n terms {t1 . . . tn},
the ObjectRank module gets MSGs, MSG(b(t1) . . .
MSG(b(tn) and evaluates each term over the
corresponding MSG. Then, it multiplies the ObjectRank
scores obtained over MSGs to generate the top-k list for
the query. For a disjunctive query, the ObjectRank
module sums the ObjectRank scores w.r.t. each term
calculated using MSGs to produce BinRank scores.

 7 EXPERIMENTAL EVALUATION

7.1 Object Rank on the full bingo Graph
ObjectRank on GbingO takes too long to be executed
online and consumes around 80 MB of memory just for
the link information of GYAHOO. As shown in Fig. 3, it
takes around 20-50 seconds (30 seconds on average) to
compute thedynamically generated top-k list for a given
single keyword

Fig. 3. The number of keywords and average ObjectRank
execution time on the bingo graph per frequency range

query even with our optimized, in-memory ObjectRank
execution engine. For frequent keywords that have
postinglists with more than 200 documents, the
ObjectRank is likelyto take longer. Since frequent
keywords are found in many articles, they are more
likely to be meaningfully connected to many other
articles through many paths, resulting in a wider search
space for ObjectRank to evaluate and rank. Fig. 3 also
shows the keyword frequency distribution obtained from
the Lucene text index built on the article titles. The total
number of keywords in the index is 698,214, and the
keyword frequencies follow the typical power law
distribution.
7.3 BinRank
During the BinRank preprocessing stage, we generate
bins for all the keywords in the corpus. Once the bins are
constructed, we generate an MSG per bin by executing

ObjectRank on Gbingo using the union of the posting lists
of the terms in a bin as a single base set. We first
describe the performance of the bin construction and
MSG generation, and then, measure the query result
quality and the impact of maxBinSize

7.3.1 Preprocessing
Bin construction. To measure the performance of the
binconstruction stage, we examine the bin construction
timeand the number of bins constructed with different
maxBinSize values

.

Fig. 4. Performance of bin construction

Fig. 5. The effect of maxBinSize on the MSG construction cost

We construct bins for all terms in our Lucene index,
except for the 381 most frequent terms which have
posting lists longer than a system parameter
maxPostingList ¼ 2;000. Recall from Section 7 that
such terms are deemed to be too frequent, so we
precompute their ObjectRank authority vectors
individually. This process takes 1.6 hrs

CONCLUSION
 In this paper, we proposed BinRank as a
practical solution for scalable dynamic authority-based
ranking. It is based on partitioning and approximation
using a number of materialized subgraphs. We showed
that our tunable system offers a nice trade-off between
query time and preprocessing cost.
We introduce a greedy algorithm that groups co-
occurring terms into a number of bins for which we
compute materialized subgraphs. Note that the number
of bins is much less than the number of terms. The
materialized subgraphs are computed offline by using
ObjectRank itself. The intuition behind the approach is

Muthe V Satya Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2541-2547.

2546

that a subgraph that contains all objects and links
relevant to a set of related terms should have all the
information needed to rank objects with respect to one
of these terms. Our extensive experimental evaluation
confirms this intuition. For future work, we want to
study the impact of other keyword relevance measures,
besides term co-occurrence, such as thesaurus or
ontologies, on the performance of BinRank. By
increasing the relevance of keywords in a bin, we expect
the quality of materialized subgraphs, thus the top-k
quality and the query time can be improved. We also
want to study better solutions for queries whose random
surfer starting points are provided by Boolean.
REFERENCES :

[1] S. Brin and L. Page, “The Anatomy of a Large-
Scale Hypertextual Web Search Engine,” Computer
Networks, vol. 30, nos. 1-7, pp. 107-117, 1998.
[2] T.H. Haveliwala, “Topic-Sensitive PageRank,” Proc.
Int’l World Wide Web Conf. (WWW), 2002.
[3] G. Jeh and J. Widom, “Scaling Personalized Web
Search,” Proc.Int’l World Wide Web Conf. (WWW),
2003.
[4] D. Fogaras, B. Ra´cz, K. Csaloga´ny, and T. Sarlo´ s,
“Towards Scaling Fully Personalized PageRank:
Algorithms, Lower Bounds, and Experiments,” Internet
Math., vol. 2, no. 3, pp. 333-358, 2005.
[5] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N.
Osipova, “Monte Carlo Methods in PageRank
Computation: When One Iteration Is Sufficient,” SIAM
J. Numerical Analysis, vol. 45, no. 2,pp. 890-904, 2007.
[6] A. Balmin, V. Hristidis, and Y. Papakonstantinou,
“ObjectRank:Authority-Based Keyword Search in
Databases,” Proc. Int’l Conf.Very Large Data Bases
(VLDB), 2004.
[7] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma,
“Object-Level Ranking: Bringing Order to Web
Objects,” Proc. Int’l World Wide Web Conf.(WWW),
pp. 567-574, 2005.
[8] S. Chakrabarti, “Dynamic Personalized PageRank in
Entity-Relation Graphs,” Proc. Int’l World Wide Web
Conf. (WWW), 2007.
[9] H. Hwang, A. Balmin, H. Pirahesh, and B. Reinwald,
“Information Discovery in Loosely Integrated Data,”
Proc. ACM SIGMOD, 2007.
[10] V. Hristidis, H. Hwang, and Y. Papakonstantinou,
“Authority- Based Keyword Search in Databases,”
ACM Trans. Database Systems, vol. 33, no. 1, pp. 1-40,
2008.
[11] M. Kendall, Rank Correlation Methods. Hafner
Publishing Co., 1955.

[12] M.R. Garey and D.S. Johnson, “A 71/60 Theorem
for Bin
Packing,” J. Complexity, vol. 1, pp. 65-106, 1985.
[13] K.S. Beyer, P.J. Haas, B. Reinwald, Y. Sismanis,
and R. Gemulla,“On Synopses for Distinct-Value
Estimation under Multiset Operations,” Proc. ACM
SIGMOD, pp. 199-210, 2007..

Mr. M V S NAGARAJU received the MCA
Degree from ANU, GUNTUR in 2009 and
He is currently pursuing M.Tech in the
Department Of Computer Science and
Engineering in Saint Theresa Institute Of
Engg & Tech Garividi, Vizianagaram, Of
JNTUK Affiliation. His research interests
include Data Mining and Computer
Networks.

Uppe.Nanaji received the B. Tech degree

from JNTU, Hyderabad, India and the M.

Tech degree in Computer Science

Technology from GITAM College Of Engg

Of Andhra University Affiliation in

Vishakhapatnam in 2003, and he is

currently pursuing the Ph. D in Computer

Networks from Andhra University

Visakhapatnam. He is working as a Head of

the Department for CSE in Saint Theresa

College Of Engg & Technology Garividi,

Vizianagartam (Dist) India. His research

interests include Computer Networks &

Data Ware Housing

Muthe V Satya Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2541-2547.

2547

